Overview

Political phenomenon are characterized by interdependence across multiple relational contexts. I present a multilayer network approach to modeling these complex phenomena. This approach:
- Does not require assumptions about independence between connected systems;
- Affords inferential leverage in the type of theoretical tests we can conduct;
- Yields models with better fit to the observed data.

Methodological Approach

An exponential random graph model is a statistical model that can test the different kinds of factors that underly the generative process of the observed network. In an ERGM, the probability of observing a network $Y = \{Y_{ij} \}$ is specified as

$$\Pr(Y; \theta) = \kappa^{-1} \exp(\theta'x(Y)).$$

where x is a vector function that yields observed network statistics computed on Y.

The multilayer network approach extends the Y matrix and the function vector x.

- **Layers** are the organizing principle of multilayer networks.
- Nodes are organized by types onto layers.
- Types are defined by the combination of all relevant node-attributes.
- Incident layers define tie type.

The adjacency matrix of a multilayer network is partitioned into blocks.
- Main diagonal blocks are intralayer ties; off diagonal blocks are interlayer ties.
- Network configurations are counted on the relevant blocks.

Illustration: Conflict in the Levant

For example, different types of conflict two-star clusters involve different strategic considerations.

Figure 1. Conflict in the Levant, 1985-1992

- Strategic considerations for actors facing political conflict span across different types of conflicts.
- For example, different types of conflict two-star clusters involve different strategic considerations.

Figure 2. Different Types of Conflict Clusters

- Figure 3. Levantine Conflict, Multilayer Representation

- The adjacency matrix of a multilayer network is partitioned into blocks.

Figure 4. Levantine Conflict, Matrix Representation

- Main diagonal blocks are intralayer ties; off diagonal blocks are interlayer ties.
- Network configurations are counted on the relevant blocks.

Figure 5. Policy communication as a multilayered network

I fit two models, one with dependence across the two communication networks and one without. I find that the cross-layer dependence term fits better and affords better understanding of policy communication networks.

Application: Policy Communication

Leifeld and Schneider, 2012, “Information Exchange in Policy Networks,” *AJPS*

- Transaction cost approach to political and scientific communication
- Reciprocity and influence in different types of communication channels should span multiple layers.

Figure 6. Network configurations for a dyad on two layers

Figure 7. Model Fit Comparisons

| Table 1. Policy communication as a multilayered network |
--------------------------	--------------------------	--------------------------		
Political Communication	2.88*	0.65	0.50	0.26
Influence of Scientific Comm.	0.81*	0.25	0.53	0.26
Scientific Communication	2.87*	0.62	7.60*	2.51
Influence of Political Comm.	1.76*	0.53	0.87	0.54
Cross-layer Dependence			0.08	0.52
Interlayer Reinforcement	1.75*	0.62	0.87	0.54
Interlayer Reciprocity (F)	0.87	0.54	0.08	0.52
Scientific Arc: Political Reciprocity (G)	-5.71*	0.65		