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ABSTRACT
Context influences sociopolitical attitudes and behaviors, making
the estimation of individuals’ contexts an important methodological
problem for the social sciences. We add to this body of work by
presenting a method to estimate an individual’s spatial contexts,
specifically the set of geospatial areas an individual is most active in.
Our approach, which utilizes the Dirichlet process mixture model,
departs most significantly from more traditional approaches to
estimating relevant spatial locations in that it does not arbitrarily
constrain the number of spatial contexts an individual can have.
This modeling approach reflects our recognition that an individual’s
lived experiences is a combination of different contexts that overlap
to varying degrees. This flexibility therefore yields a more valid
measure of spatial contexts. To illustrate our method, including its
performance relative to other measures, we apply our method to
Twitter data generated by protesters who participated in the 2015
Freddie Gray protests in Baltimore, MD.
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1 INTRODUCTION
Across a wide variety of social sciences, context has been repeatedly
shown to be one of the most important determinants of human
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social behavior. Context matters. Individuals modulate their re-
sponses to stimuli according to their social network, the formality
of the situation, and power and status differentials. While qualita-
tive accounts of behavior have long emphasized the importance
of context, recent empirical research provides causal evidence for
the effect of context on behavior. Using a variety of sophisticated
research designs, context has been shown to affect altruism [29];
anti-immigrant sentiment and discriminatory behavior [10–12];
and support for extremist politicians [17].

The relationship between context and behavior in the social sci-
ences is not always easy to discern. Each individual’s behavioral
responses are conditioned by the social, economic, and political
realities of their specific setting. Unfortunately, identification of
individual-level contextual factors that are hypothesized to influ-
ence behavior are difficult to gather. Furthermore, it is often the
case that the act of measurement itself changes the behavior of the
subject under study. Measurement is typically an inherently social
act. Survey participation requires the active and informed consent
of the individual participant. In this context, social desirability bias
is quite difficult to avoid. Thus, contextual factors at the individual
level are difficult and costly to measure and often too complex to
manipulate experimentally.

To overcome these challenges, many of the aforementioned stud-
ies rely upon some form of randomized intervention as a design
feature, be it through the lab, in the field, or naturally occurring. In
these studies, each subject’s context is manipulated through vari-
ous stimuli. For example, in one study participants encountered a
homeless person, staged by the experimenters, as they completed
a survey. This allowed the experimenters to measure the way in
which visible poverty affects altruistic sentiment [29]. Another
study engaged participants who self-identified as white/Caucasian
in a game in which they were asked to play the role of a country’s
dictator. When these participants had been previously informed
about the growth of the Hispanic population inside the United
States, they were more likely to favor other white participants [1].
Research has also found that transphobia —prejudice against trans-
gender people — is reduced when canvassers randomly encourage
active-perspective-taking among survey respondents [6]. These
studies collectively illustrate the powerful way in which situational
factors can influence social behavior.

Randomized experiments convincingly establish causality and
rule out alternate explanations. However, the external validity of
such findings are not always easily established [13, 30, 31]. This
problem is particularly acute in experiments that attempt to mea-
sure political and social context, which, by necessity, tend to adopt
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extremely powerful treatments in order to generate statistically
detectable effects within limited sample sizes. In contrast, though
observational studies do not typically have as strong internal va-
lidity, they effectively address the question of external validity.
Observational studies measure subject specific-behaviors in real
life situations, often without direct intervention on behalf of the
experimenters, which may unintentionally alter the behavior under
study [13]. For example, observational studies of political context
have considered theway inwhich demographics affect “white flight”
[9, 23], diversity and inter-ethnic violence [7], and voter turnout
for minority candidates [3].

Most theories about behavioral variations across contexts op-
erate at the individual level, but inference at this level of analysis
is often constrained by two primary difficulties associated with
data availability. First, sparsity in behavioral responses measured
at the individual level often leads to the use of group-level out-
comes as aggregated behavioral measures. The resulting inference
may be subject to a serious ecological inference problem [22]. Sec-
ond, subject to data constraints, researchers are often forced to
rely on coarse measures of context. Depending on the particular
mechanisms specified in the study, the use of coarse, non-localized
contexts may be inappropriate as there might be high levels of
within-context variation in the stimuli of interest. Imprecise mea-
sures of context therefore introduce high levels of measurement
error, rendering the inferred contextual factors not meaningfully
relevant to individuals’ experiences. Scholars have adopted a va-
riety of strategies to address this issue of ecological validity, such
as using small units of analysis when available [7], or adopting
different statistical methods. The increasingly widespread penetra-
tion of social media, and the resulting flood of individual-level data,
presents a third option: measuring context through social media
behavior [24, 25].

An increasingly rich and important literature uses social media
to draw inferences about contextual effects across a variety of do-
mains and behaviors, including job-seeking [14], voting behavior
[5], collective action in autocracies [32, 33], and even politicians’
communication with one another [2]. Commonly-available forms
of social media data still pose restrictions on the types of contextual
effects that researchers can study. Although the application pro-
gram interface (API) for some companies and commercial vendors
provides information about users’ time zone or country, these are
measures of context only in the broadest and most aggregate sense.
Using these locations to infer context potentially creates the same
type of ecological inference issue as described above. Again, it is
crucial to address this issue, as we know that an individual’s context
matters for understanding how she conditions her behaviors.

To address this inferential problem, there is a burgeoning field
of research that develops new methods for analyzing what is re-
ferred to as “volunteered geographic information” [21]. Grace et al.
[18], for example, uses users’ network ties to local organizations to
infer residential location. Others, such as Hasan et al. [19], employ
semantic analysis to extract geospatial information embedded in
social media text. This field of research highlights the importance
of continually developing means to infer context from social media
data.

In this paper, we contribute to this developing line of research
and present a method to estimate Twitter users’ “social activity

hubs” (SAHs), or the geospatial areas where users spend their time.
Our approach, which builds on Rossmo [28] and Verity et al. [35],
departs most significantly from earlier approaches in that it does
not arbitrarily constrain the number of clusters an individual’s
overall movement profile can contain [35]. This modeling approach
reflects our recognition that an individual’s lived experiences is a
combination of different contexts that overlap to varying degrees,
and that data-driven methods of inferring how many contexts are
relevant to each individual is superior to relying on assumptions
when we lack strong a priori beliefs. We estimate these SAHs using
an algorithm that selects between geoprofiling models of varying
sophistication that are conditional on information availability. For
users with enough information, we utilize posterior quantities from
a Dirichlet process mixture model to compute SAHs.

As initial evidence the utility of SAHs as a measure of political
context, we run our algorithm on a sample of geotagged tweets
made by Twitter users who participated in the Freddie Gray protests
in Baltimore, MD in April 2015. Estimated SAHs are plotted on a
Baltimore City map in Figure 1. As is evident, our model yield
SAHs that cluster in areas with high daytime populations, such
downtown Baltimore, and the high population area surrounding
Johns Hopkins University. This demonstrates that our SAHs are a
useful tool to generate disaggregated, individual-level estimates of
social media users’ economic, social, or political contexts. In the
remainder of this paper, we describe the SAH model, and further
illustrate its applications using Twitter data from Baltimore during
the Freddie Gray protests.

2 RESEARCH DESIGN
2.1 Background on the Social and Political

Context during the 2015 Baltimore Protests
Freddie Gray was arrested on April 12, 2105 by Baltimore Police
Department (BPD) officers for possession of what officers believed
at the time was an illegal switchblade.1 For reasons that are under
dispute, Gray fell into a coma while being transported in a police
van subsequent to his arrest. He never recovered from his injuries
and died in a trauma center on April 19, 2015. Starting on April 18,
2015, protesters began gathering in front of Baltimore’s Western
district police department to denounce Gray’s alleged mistreat-
ment and BPD brutality. These protests grew steadily in size as
media attention to Gray’s case increased throughout the week. The
protests continued to gain momentum and eventually reached sev-
eral thousand people. The Maryland National Guard, responding
to a declared state of emergency, was brought in to restore order to
the city. A mandatory curfew was declared within Baltimore city
limits from April 28 to May 3. As Chen et al. [8] argue that contact
with police affects behavior, our empirical application is focused
on these protests.

2.2 Sampling and Data Collection
Prior to beginning our analysis, we first purchased all of the geo-
tagged tweets posted within the geospatial boundaries of Baltimore
City, MD from April 16, 2015 to May 4, 2015. These dates were
1While officers testified that they believed Gray’s knife was illegal, the Maryland
state attorney for Baltimore later clarified that Gray in fact was in possession of a
spring-assisted knife that was legal under Maryland law [4].
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Figure 1: Geographical distribution of social activity hubs in Balti-
more, MD estimated using the DPM-based local minima submodel.
SAHs cluster in areas with high daytime populations like down-
town Baltimore and the high population area around Johns Hop-
kins University. The process for estimating these locations is de-
scribed in section 3.

selected because they were when the protests related to the death
of Freddie Gray occurred in the city. Our sample included a total
of 111,440 tweets made by 7,884 unique users. In order to restrict
our analysis to people with a positive probability of protesting,
we limited our sample to only include geotagged tweets. Present
illustrations are based on smaller subsets of these users.

In order to estimate these users’ SAHs, we collected up to 3,200 of
each user’s most recent tweets using Twitter’s API, which we called
through the TwitteR package in R [16].2 Tweets were collected
between July 19, 2016 and August 27, 2016. Each user’s tweets
are then narrowed to those that contain geotags. Each geotagged
tweet in this final sample is treated as an observed incident of the
user’s movement patterns, and from the collection of all observed
incidents, we estimate the user’s SAHs.3

By default, a twitter user’s location is not displayed when posting
a 140 character message to twitter. However, users can identify
their location when tweeting by enabling the location services

2API Documentation available here: https://dev.twitter.com/rest/reference/get/
statuses/user_timeline.
3As our research strategy enables us to estimate Twitter users’ Social Activity Hub
location, it is pertinent to address ethical concerns regarding the steps we take to
maintain anonymity and protect users from potential harm. First, the sample is only
taken from users who had opted into sharing their location with Twitter. By default,
Twitter does not record the location where a tweet was posted. Instead, users must
change their phone’s settings to give Twitter permission to record their location via
GPS. Second, we anonymize Twitter account names by applying a cryptographical
hash. Third, the estimate standard deviation of the location means that we are only
able to know the location of the Social Activity Hub within three miles.

that twitter provides. A user is able to selectively add location
information, such as a geographic area (city or neighborhood), or
a precise location in terms of latitude and longitude coordinates
from the global positioning system that is available in most smart
phones. Importantly, opting to share the location of a tweet is a
social act. Because this is central to our research question, we do
not include data from those individuals who chose not to disclose
their geographic location.

3 ESTIMATING SOCIAL ACTIVITY HUBS
In this section, we present in detail the method we used to estimate
Twitter users’ SAHs. As the availability of information associated
with each Twitter account differs, our SAH model, summarized
in algorithm 1, is conditional on what this information affords,
defaulting to more basic models where data availability is low. More
specifically, we intend to define SAHs in twoways described inmore
detail below, based on posterior quantities of a Dirichlet process
mixture (DPM) model for spatial data [35]. Estimation relies on
an MCMC algorithm,4 which is subject to convergence difficulties.
In these rare cases, we document the specific user and return to
diagnose potential issues. We discuss this phenomenon and our
solutions more explicitly in section 3.1.1.

3.1 Dirichlet Process Mixture Model for Spatial
Data

For users whose tweets contain sufficient information regarding
their movement patterns, we use the Dirichlet process mixture
(DPM) model of geographic profiling as the basis of our SAH model.
DPM models for spatial data, based on prior geographic profiling
models in criminology [27, 28], was first described in [35] where
it was applied to spatial epidemiology. More recently, the model
was used in an attempt to determine the identity of graffiti artist
Banksy [20].

The intuition of the DPM model for spatial data is to sort a set of
observed incidents in physical space into clusters originating from
different source locations, without prior assumptions about the
number of clusters that exist. For our present purposes, the DPM
model is preferred over alternatives that require a fixed number of
clusters (including those with a single cluster), because individuals
are likely to vary in terms of their movement patterns (of which we
have no prior data). Where there are multiple clusters, especially
when they are highly dispersed, a misspecified number will result in
inaccurate source location estimates that are skewed by “outliers,”
which are actually observations that originate from a different
source.

TheDPMmodel rectifies this by estimating the number of sources
based on the observed data. The flexibility afforded by this feature
is especially desirable, given the large number of Twitter accounts
we are working with, as it is not feasible to adjust the SAH model
for each Twitter account individually. A DPM model is not without
assumptions, which are provided in the description below. In short,
by employing the DPM model, we assume that individuals can
have multiple SAHs from where their movement outward follows
identical distributions, which in this implementation we specify as

4The algorithm is implemented in the Rgeoprofile package for R [34].
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Algorithm 1: Social Activity Hub Estimation for Each User

Data: The set of n observed incidents xi = (x (1)i ,x
(2)
i ),

i = 1, ...,n
if n = 1 then

Assign x1 as SAH(sole observed);
else

MCMC algorithm implemented as the RunMCMC() function
in Rgeoprofile 1.2 [34, summarized below in algorithm 2],
based on the discussion in Verity et al. [35]);
if convergence fails;
then

Document failure;
else

Take 3000 posterior draws; thin by keeping the first of
every 30;
begin local minima model:

combine all 100 posterior draws;
a) calculate hitscore surface;
b) find local minima j on surface within σ degree
decimal radius, j = 1, ...,∞;
c) foreach local minimum j do

Assign xi closest in Euclidean distance to
local minimum as SAH(local minima)

j
end
foreach posterior draw do

a to c;
end

end
begin cluster mean model:

combine all 100 posterior draws;
d) foreach cluster j of x do

Assign xi closest in Euclidean distance to
estimated source of cluster as
SAH(cluster mean)

j
end
foreach posterior draw do

d;
end

end
end

end
Result: SAH=(SAH(sole observed), SAH(local minima),

SAH(cluster mean))

a bivariate normal distribution, with standard deviation varying by
specific application.

More specifically, the DPM model we use, adapted for spatial
data by Verity et al. [35], is as follows. For each Twitter user, define
a two-dimensional sample space with a finite grid of cells as Ω, in
which each cellω = (ω(1),ω(2)) is a vector containing the latitude
and longitude in decimal degrees of a geocoordinate. The set of
n geocoordinates obtained from geotagged tweets x = x1, ...,n is
assumed to be the result of independent draws from a mixture of a

countably infinite set of bivariate normal distributions centered on
z = z1, ...,∞, each with a variance of σ 2; (σ contains expectations
about the movement patterns of individuals and must be specified
by the user). Both x and z are defined on Ω. The prior distribution of
the set of z is assumed to be a bivariate normal centered on the mean
of x, with a variance of τ 2 (τ is set to the largest distance in either
longitude or latitude). ci is a categorical variable that assigns xi to
source zci , and is drawn from a Dirichlet process, specifically the
Chinese Restaurant Process which has a concentration parameter α
drawn from a diffuse hyper-prior (specifically h(α) = ((1 + α)2)−1)
and a base distribution that is the bivariate normal (with mean x/n)
discussed above. This is formally represented as,

xi |zci ∼ N(zci , Σ =
[
σ 2 0
0 σ 2

]
)

z1, ...,∞ ∼ N(x/n,T =
[
τ 2 0
0 τ 2

]
)

ci ∼ CRP(α)
α ∼ H

(1)

Exact computation of posterior quantities are intractable when
the number of observations is high (n > 10 being a useful rule
of thumb; see [35] for analytical solutions to relevant posterior
quantities), but can be estimated using MCMC methods [26, 35],
which is implemented in the R package Rgeoprofile 1.2 [34]. The
MCMC algorithm (RunMCMC() presented in algorithm 2) is based on
a Gibbs sampler that alternates between draws of source locations
zci and cluster assignment ci for all i = 1, ...,n observations. The
algorithm returns, for each xi , its cluster ci ; and for each unique
cluster c j , its spatial mean zj .

Algorithm 2: RunMCMC from Rgeoprofile 1.2 [34]

Data: The set of n observed incidents xi = (x (1)i ,x
(2)
i ),

i = 1, ...,n
Initialize by setting initial values and computing relevant
priors;
Define sampling steps:

a) draw and update zci based on most updated ci ;
b) draw and update ci based on most updated z;

begin Burn-in
repeat

for i in 1 to n do a-b;
until convergence;

end
begin Posterior draws

foreach posterior draw do
for i in 1 to n do a-b;

end
end
Result:

1. For each x1, ...,n , its corresponding cluster ci
2. For each unique cluster c j , its source location zj
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3.1.1 Diagnosing Convergence Difficulties. MCMC convergence
is assessed by the potential scale reduction factor (psrf) evaluated
on the log-likelihood of the model [15]. This assessment is imple-
mented as gelman.diag() the in the coda package. MCMC chains
are taken to have converged when the upper bound of the psrf falls
below 1.1 following a burn-in period, which we specified as 300
draws. Generally, models successfully converge within the burn-in
period or shortly after, but one of two issues may arise.

First, a small number of models take a disproportionally long
time to reach convergence. This usually occurs for users with a
large set of observed incidents. Because we have a need to estimate
a large number of SAHs, we specify a maximum burn-in of 3,000
iterations, at which point if the psrf is not below 1.1, the specific user
is documented for manual diagnosis. For reference, consider that
in the two illustrations presented below, failure to converge after
3,000 burn-in draws occurred 14 times out of 200 users estimated,
and one time out of 126 users estimated. In fact, for most data sets,
convergence was achieved within the minimum burn-in period of
300 or shortly after. For the present illustrations, we drop users who
do not converge after 3,000 burn-in draws from our examination
as representative sampling is not a requirement.

Second, extreme sparsity in data in the form of singular observa-
tions or spatially dispersed observations without overlap (which
are singular observations within certain clusters) can result in an
error when computing the psrf. To see why this occurs, first note
that the log-likelihood of the model is calculated based on the fit
of the distribution of observed incidents into clusters, including
the number of clusters present and how the observed incidents
are sorted among them. This occurs after sampling step b in algo-
rithm 2. In instances of high data sparsity and dispersion, cluster
assignments ci are never updated through sampling step b because
the probability of assigning a different cluster, which is updated in
step a, while always nonzero, is extremely low. The result is that
for all MCMC iterations across all chains, the same log-likelihood
is computed based on the unchanging distribution of observed
incidents into clusters. In short, the Gibbs sampler immediately
moves to a very small area and any movement within this area does
not yield probabilities for different clustering combinations that is
meaningfully above zero. The log-likelihood which is computed
based on this clustering therefore remains constant, leading to er-
rors when attempting to compute the psrf as it is based on variation
within and across MCMC chains. We document these errors, but
take the modeled results as the best estimate of SAHs given the
available information, and as such, take these models as having
converged. The most extreme case is where there is only a singular
observation, which we immediately take to be the SAH as outlined
in algorithm 1.

3.2 Local Minima and Cluster Mean Submodels
As introduced earlier, we use the posterior quantities obtained from
the DPM model in our SAH model in two ways. For the local min-
ima submodel, begin by defining S ⊆ Ω as the grid bound by the
minimum and maximum values of the set of observed x. Next, for
every cell s ∈ S, rank s according to the sum of its distances to
each source location zj over all posterior draws, where distance is

not linear but weighed by the inverse of the bivariate normal den-
sity around zj . Consistent with existing geoprofiling approaches
[e.g. 28], ranks are transformed to hitscores on [0, 1), but remain
functionally equivalent in that lower is better and all values are
distinct.5 This type of hitscore surface is traditionally used as a
surface for search priority of source locations [28, 35]. On this sur-
face, we find allm local minima (i.e. locations with higher priority)
within an approximately two mile radius (0.05 decimal degrees) and
define a user’s SAHs as the set ofm observed xi closest to these
local minima. For the cluster mean submodel, we define a user’s
SAHs as the set of observed xi closest to the set of estimated source
locations z averaged across posterior draws.

Figure 2 illustrates the SAHs estimated under both submodels in
relation to the hitscore surface produced by the DPM model. For
this Twitter account, the DPM model aggregated over all posterior
draws estimated the set of observed incidents to have originated
from two sources (i.e. zj , j = 1, 2). As evident from Figure 2, the
two submodels agreed on a potential source z1 in the upper left
of the physical space (directly north of Baltimore City) as an SAH.
In the bottom left (directly west of Baltimore City), observations
are not dispersed enough to consistently yield a third cluster, but
are relatively sparse, such that the estimates for the second source
varied greatly. In fact, between different posterior draws, the DPM
model assigned the set of x not associated with z1 to either z2 or z3.
Because of this, the difference between the local minima and cluster
mean submodels (based on how posterior draws are aggregated, i.e.,
sum of computed probabilities versus means), leads to disagreement
between the submodels on the second SAH. This example illustrates
the importance of understanding uncertainty in the DPM model,
which we discuss next.

3.3 Uncertainty in the DPM Model
In earlier applications of the DPM model to spatial data, there is
justifiably less of a concern over the uncertainty of estimates. How-
ever uncertain, the expected values of z are what informs a search
that must take place. Existing implementations of the model [34,
e.g.,] therefore do not readily yield uncertainty measures. However
for inferential modeling, measures of uncertainty feature much
more prominently. In order to account for uncertainty in our SAH
model, we take 3,000 draws from the posterior distribution of the
DPM model, thinned to 100 samples, and use this information to
determine a set of corresponding SAHs following both the local
minima and cluster mean submodels. Specifically, for the local min-
ima submodel, instead of computing a hitscore surface based on
all posterior draws, we do so for each draw independently; and
for the cluster mean submodel, z is not averaged across posterior
draws. SAH estimates are stored for each posterior draw, forming
a posterior distribution of SAHs. This distribution can be used in
subsequent statistical modeling to account for uncertainty associ-
ated with the SAH model. In the remainder of this section, we use
the same Twitter account as above to illustrate uncertainty within
the two DPM-based submodels. This particular account was chosen
because it is illustrative both in terms of its estimates and the un-
certainty associated with them. The level of uncertainty associated

5The two computational steps above are implemented in the ThinandAnalyse() func-
tion in Rgeoprofile 1.2 [34].
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Figure 2: Example of a single user’s estimated social activity hubs in
relation to the hitscore surface produced by the DPMmodel. Yellow
points are observed incidents. Points enclosed in blue indicate SAHs
determined by the localminima submodel. Points in enclosed in red
indicate those determined by the cluster means submodel.

with this account, based on visual inspection, is neither particularly
high nor low.

In order to visualize the level of uncertainty about our SAH
estimates, we plot the variation in hitscore associated with each
potential source across all posterior draws. Specifically, in Figure 3
(which corresponds to the hitscore surface in Figure 2), each hori-
zontal line documents the hitscore of a potential source location
as it varies across posterior draws. The highlighted lines are the
sources chosen as the SAHs from the combined posterior draws,
whichmay differ depending on the submodel used. The highlighting
color serves to tie corresponding SAHs across the two subfigures.
Variation in the hitscore indicates changes in the topography of
the hitscore map across posterior draws. This does not, however,
necessarily mean that there is uncertainty about the SAH estimates,
which arise when changes in the topography are large enough to
induce changes in the hitscore rank of potential sources relative
to one other. This uncertainty is indicated by lines that cross. Fu-
ture work may benefit from a formal quantification of this type of
uncertainty.

As discussed earlier, the DPM model estimated the set of ob-
served incidents associated with this account to have originated
from two sources. As is shown in Figure 3, corroborating Figure 2,
both DPM-based submodels yielded the potential source location
with the lowest hitscore as one of the two SAHs. This SAH1, high-
lighted in turquoise, is associated with very little uncertainty. The
variation in its hitscore across all posterior draws is minor, and it
maintains a stable hitscore rank in all but one draw (42). On the
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Figure 3: Visualization of uncertainty about SAH estimates. Each
line indicates a source location and its variation in hitscore across
different draws. Highlighted lines indicate source locations selected
by the algorithm as an SAH.

other hand, the second SAH2, highlighted in two shades of coral,
differs between the two submodels and exhibits high levels of un-
certainty within each submodel. As is evident from the figure, the
local minima SAH(localminima) varies widely between posterior
draws, but for the majority of these draws, it is the best performing
SAH (in terms of hitscore), just after the SAH1. The cluster mean
SAH(clustermean) is not selected based on the hitscore of potential
source locations, but still yields a relatively desirable result accord-
ing to this criterion; while its hitscore based on the aggregated
posterior draws is not as low as that of the SAH(localminima)

2 , it is
subject to less of the extreme fluctuation across draws exhibited by
the local minima submodel.

At the same time, the present discussion serves to illustrate
the potential for high levels of uncertainty to be associated with
DPM-based SAHs. Researchers intending to utilize these estimated
quantities should be mindful of this when making statistical in-
ferences. As we proposed, the entire posterior draw can be used
in statistical modeling, which allows for the construction of con-
fidence bounds. Our novel method paves the way future work in
formal quantification of the uncertainty discussed here and in bet-
ter understanding the inferential shortcomings associated with not
properly accounting for this source of uncertainty.

4 ILLUSTRATIONS
In this section, we illustrate the validity of our measurement algo-
rithm in two ways, as comparison to traditional spatial estimation
models, and based on its predictive validity.
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4.1 Comparison to Spatial Means
First, we compare for each user the performance of their SAHs
obtained from the local minima and cluster mean submodels rel-
ative to the source closest to the spatial mean of their observed
incidents. To do so, we randomly selected 200 users from the sample
described in section 2.2. Users whose DPM model did not converge
were dropped as discussed in section 3.1.1, yielding a final sample
of 186. For each user, we estimated their SAH(localminima) and
SAH(clustermean).6 We also calculated the spatial mean of their
observed incidents, and similar to how we estimate SAHs, specify
the potential source closest to the spatial mean as the estimated
source. Then, we calculate the Euclidean distance between each
of the user’s observed incidents to its closest SAH(localminima),
SAH(clustermean), and the spatial mean-estimated source. Finally,
we record the median distance for each estimation method. We
repeated these steps for each of the 186 users. The results are sum-
marized in Table 1 as percentiles of the median distances for each
estimation method.

Distance between Estimated Sources and Incidents

Percentiles

Method 5 25 50 75 95

Local Minima 0.00 0.0005 0.02 0.07 0.40

Cluster Mean 0.00 0.0004 0.01 0.02 0.05

Spatial Mean 0.00 0.0651 0.33 1.67 20.22

n = 186

Table 1: Comparison of different estimation methods. Cells are the
percentile values of the median distance in decimal degrees from
each user’s observed incidents to their closest SAH/spatial mean.

It is evident from the results that the source estimated based
on the spatial mean tends to be considerably more distant to the
user’s observed incidents. Based on this, we believe that the face
validity of the spatial mean is generally low. These results high-
light the importance of a data-driven approach to estimating the
optimal number of clusters in social media data. Forcing data into
a user-determined number of clusters (one in this example) biases
estimated movement patterns, which may critically influence sub-
sequent inferential steps.

4.2 Predictive Validity
Next, we assess the predictive validity of our SAH measures. To
do so, we compare whether the SAHs from known protesters in
our data are more likely to fall within known protest locations
compared to a sample of users whose protest behavior is unknown.

6Model parameters are specified to be the ones presented: σ = 0.05 decimal degree;
minimum burn-in of 300; maximum burn-in of 3,000; 3,000 posterior draws thinned
to 100. Convergence results are: 14 did not converge after 3,000 burn-in draws. Data
for 42 users were at least conditionally sparse in observations, with 9 of these being
single observations.

After drawing a random subset of 1,000 tweets from the sample
described in section 2.2, we hand-codewhether each tweet indicated
attendance in the Freddie Gray protests. We identify 64 unique
protesters within this subset. From the same subset, we randomly
select 62 users who we did not identify as protesters. Then, we
estimate our two SAH measures for all 126 users.7

Using the resulting SAHs, we next consider whether there are
different geospatial patterns in the SAHs from protesters and non-
protesters. Specifically, we assess the proportion of users from both
samples with at least one SAHwithin a known Freddie Gray protest
location. We identify these locations based on data from Baltimore
news sources published in April and May, 2015. These locations are
summarized in Table 2.
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Figure 4: Visualization of results from the validation exercise to as-
sess whether SAHs recover different patterns among protesters and
non-protesters. The six light blue circles indicate known protest
locations. Dark blue dots are all observed tweets. Red dots are
SAHs that belong to protesters, while yellow ones belong to non-
protesters. As the figure show, protesters’ SAHs tend to be closer to
known protest locations. These results are presented in Table 3.

Results from our examination are presented in Table 3. As these
results indicate, there is a stark contrast between the SAH of users
from whomwe have observed protest behavior and those for whom
we have no information. These results demonstrate the ability of our
measure to capturemeaningful behavior patterns based on observed
movements, further supporting the validity of our method.

7Because the aim is to identify localized movement patterns as opposed to more general
hubs, model parameters are specified slightly differently: σ = 0.01 decimal degree;
minimum burn-in of 300; maximum burn-in of 3,000; 3,000 posterior draws thinned
to 100. Convergence results are: 1 did not converge after 3,000 burn-in draws. Data
for 24 users were at least conditionally sparse in observations, with 10 of these being
single observations.
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Locations of Freddie Gray Protests

Location Longitude Latitude

North and Penn -76.6425 39.3100

Baltimore Police Dept. West -76.6445 39.3006

Baltimore City Hall -76.6104 39.2909

Gilmor House -76.6433 39.3049

Mondawmin Mall -76.6543 39.3170

Penn Station -76.6163 39.3071

Table 2: Summary of locations in or near Baltimore City bounds
specified as a protest location during the Freddie Gray protests,
April-May, 2015.

Proportion of Users with SAHs in Protest Locations

Local Minima Cluster Mean

Protesters 0.37 0.27

Random Sample 0.02 0.02

Difference 0.35 0.25

nprotest = 63, nrandom = 62

Table 3: Summary of SAH predictive validity. Cells are the propor-
tion of users from either sample with at least one estimated SAH
falling within a known protest location. Protest location is defined
by a 0.0025 decimal degree radius around each of the six coordinates
specified in Table 2. Using a 0.005 decimal degree radius yields sim-
ilar results.

5 DISCUSSION
In this paper, we contribute to the developing field of research on
inferring geospatial context from volunteered geographic infor-
mation, and presented a method to estimate Twitter users’ “social
activity hubs” (SAHs), or the geospatial areas where users spend
time throughout the day. As a validation exercise, we linked these
locations to incidences of political participation, in particular the
protests that transpired over the death of Freddie Gray, in Baltimore
during April and May of 2015. The patterns we discovered suggest
the methods proposed here for estimating SAHs are able capture
meaningful measures of sociopolitical context.
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